ЛАБОРАТОРНА РОБОТА № 1

Тема: Техніка безпеки в лабораторії.  Основи цифрової схемотехніки. Системи числення

Мета роботи. Дослідити основні алгоритми перетворення чисел із однієї позиційної системи числення в іншу (двійкової, вісімкової, десяткової, шістнадцяткової).

 

1. Теоретичні відомості

Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Звичайною для нас і загальноприйнятою є позиційна десяткова система числення. Як умовні знаки для запису чисел вживаються цифри.

Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною.

Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.

Найпростішим способом запису натурального числа є зображення його за допомогою відповідної кількості паличок або рисочок. Таким способом можна користуватися для невеликих чисел.

Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D -п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.

Позиційні системи числення

Загальноприйнятою в сучасному світі є десяткова позиційна система числення, яка з Індії через арабські країни прийшла в Європу. Основою цієї системи є число десять. Основою системи числення називається число, яке означає, у скільки разів одиниця наступного розрядку більше за одиницю попереднього.

Загальновживана форма запису числа є насправді не що інше, як скорочена форма запису розкладу за степенями основи системи числення, наприклад

130678=1*105+3*104+0*103+6*102+7*101+8

Тут 10 є основою системи числення, а показник степеня - це номер позиції цифри в записі числа (нумерація ведеться зліва на право, починаючи з нуля). Арифметичні операції у цій системі виконують за правилами, запропонованими ще в середньовіччі. Наприклад, додаючи два багатозначних числа, застосовуємо правило додавання стовпчиком. При цьому все зводиться до додавання однозначних чисел, для яких необхідним є знання таблиці додавання.

Проблема вибору системи числення для подання чисел у пам'яті комп'ютера має велике практичне значення. В разі її вибору звичайно враховуються такі вимоги, як надійність подання чисел при використанні фізичних елементів, економічність (використання таких систем числення, в яких кількість елементів для подання чисел із деякого діапазону була б мінімальною).

Для зображення цілих чисел від 1 до 999 у десятковій системі достатньо трьох розрядів, тобто трьох елементів. Оскільки кожен елемент може перебувати в десятьох станах, то загальна кількість станів - 30, у двійковій системі числення 99910=1111100, необхідна кількість станів - 20 (індекс знизу зображення числа - основа системи числення). У такому розумінні є ще більш економічна позиційна система числення - трійкова. Так, для запису цілих чисел від 1 до у десятковій системі числення потрібно 90 станів, у двійковій - 60, у трійковій - 57. Але трійкова система числення не дістала поширення внаслідок труднощів фізичної реалізації.

Тому найпоширенішою для подання чисел у пам'яті комп'ютера є двійкова система числення. Для зображення чисел у цій системі необхідно дві цифри: 0 і 1, тобто достатньо двох стійких станів фізичних елементів. Ця система є близькою до оптимальної за економічністю, і крім того, таблички додавання й множення в цій системі елементарні:

+

0

1

 

*

0

1

0

0

1

 

0

0

0

1

1

10

 

1

0

1

 

Оскільки 23=8, а 24=16 , то кожних три двійкових розряди зображення числа утворюють один вісімковий, а кожних чотири двійкових розряди - один шістнадцятковий. Тому для скорочення запису адрес та вмісту оперативної пам'яті комп'ютера використовують шістнадцяткову й вісімкову системи числення. Нижче в таблиці 1.1 наведені перших 16 натуральних чисел записаних в десятковій, двійковій, вісімковій та шістнадцятковій системах числення.

Таблиця 1.1

10

2

8

16

0

0000

0

0

1

0001

1

1

2

0010

2

2

3

0011

3

3

4

0100

4

4

5

0101

5

5

6

0110

6

6

7

0111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

В процесі налагодження програм та в деяких інших ситуаціях у програмуванні актуальною є проблема переведення чисел з однієї позиційної системи числення в іншу. Якщо основа нової системи числення дорівнює деякому степеню старої системи числення, то алгоритм переводу дуже простий: потрібно згрупувати справа наліво розряди в кількості, що дорівнює показнику степеня і замінити цю групу розрядів відповідним символом нової системи числення. Цим алгоритмом зручно користуватися коли потрібно перевести число з двійкової системи числення у вісімкову або шістнадцяткову. Наприклад, 101102=10 110=268, 10111002=101 1100=5C8

У двійковому відбувається за зворотнім правилом: один символ старої системи числення заміняється групою розрядів нової системи числення, в кількості рівній показнику степеня нової системи числення. Наприклад, 4728=100 111 010=1001110102, B516=1011 0101=101101012

Як бачимо, якщо основа однієї системи числення дорівнює деякому степеню іншої, то перевід тривіальний. У протилежному випадкові користуються правилами переведення числа з однієї позиційної системи числення в іншу (найчастіше для переведення із двійкової, вісімкової та шістнадцяткової систем числення у десяткову, і навпаки).

Алгоритми переведення чисел з однієї позиційної системи числення в іншу

1. Для переведення чисел із системи числення з основою p в систему числення з основою q, використовуючи арифметику нової системи числення з основою q, потрібно записати коефіцієнти розкладу, основи степенів і показники степенів у системі з основою q і виконати всі дії в цій самій системі. Очевидно, що це правило зручне при переведенні до десяткової системи числення.

Наприклад: з шістнадцяткової в десяткову:

92C816=9*10163+2*10162+C*10161+8*10160= 9*16103+2*16102+12*16101+8*16100=37576

з вісімкової в десяткову:

7358=7*1082+3*1081+5*1080= 7*8102+3*8101+5*8100=47710

з двійкової в десяткову:

1101001012=1*1028+1*1027+ 0*1026+1*1025+0*1024+0*1023+ 1*1022+0*1021+1*1020= 1*2108+1*2107+0*2106+1*2105+ 0*2104+0*2103+1*2102+0*2101+ 1*2100=42110

2. Для переведення чисел із системи числення з основою p в систему числення з основою q з використанням арифметики старої системи числення з основою p потрібно:

Цим самим правилом зручно користуватися в разі переведення з десяткової системи числення, тому що її арифметика для нас звичніша.

Приклади: 999,3510=1111100111,010112

для цілої частини:

rys13_2

для дробової частини:

rys14_2

2. Практична частина

Під час проведення розрахунків слід переводити числа таким чином, щоб при фігу-руванні десяткової системи записи перетворень виписувались цілком.

2.1. Програма роботи та завдання.

2.1.1. Перевести подані числа з однієї позиційної системи числення в іншу відповідно до варіантів поданих викладачем.

2.1.2. Дати письмову відповідь на питання для контролю у звіті разом з обчисленнями.

 

Контрольні питання:

1)    Назвати найбільш поширені позиційні системи числення.

2)    Написати формулу,  за якою знаходиться кількість інформації І.

3)    У чому полягає проблема вибору системи числення?