2. Будова блока живлення

250px-ATX_power_supply_interior-1000px_transparent

Рис. 58. Імпульсний блок живлення комп'ютера (ATX): A - вхідний діодний випрямляч, нижче видно вхідний дросельний фільтр; B - конденсатори вхідного фільтра, правіше – радіатор високовольтних транзисторів; C - імпульсний трансформатор, правіше видно радіатор низьковольтних діодних випрямлячів; D - дросель групової стабілізації; E - конденсатори вихідного фільтра.

 

Вхідний фільтр (дросель і конденсатори) – запобігає поширенню імпульсних перешкод в живильній мережі, зменшує стрибки струму заряду електролітичних конденсаторів при включенні комп’ютера в мережу, який може призвести до пошкодження вхідного випрямного моста.

Вхідний випрямний міст перетворює змінну напругу в постійну пульсуючу. Конденсаторний фільтр згладжує пульсації випрямленої напруги.

Окремий малопотужний блок живлення видає +5 В чергового режиму і +12 В для живлення мікросхеми перетворювача. Зазвичай дане джерело живлення виконане у вигляді перетворювача на дискретних елементах або на типових моделях на мікросхемі TOPSwitch.

Перетворювач півмостовий виконаний на двох біполярних транзисторах. Схема управління перетворювача захисту комп'ютера від перевищення чи зниження живлячих напруг, зазвичай виконана на спеціалізованій мікросхемі TL494, UC3844, KA5800 чи ін.

Імпульсний високочастотний трансформатор служить для формування необхідних номіналів напруги, а також для гальванічної розв'язки ланцюгів (вхідних від вихідних, а також, при необхідності, вихідних один від одного). Ланцюги зворотного зв'язку підтримує стабільну напругу на виході блоку живлення.

Вихідні випрямлячі. Позитивні та негативні напруги (5 і 12 В) використовують одні й ті ж вихідні обмотки трансформатора, з різним напрямком включення діодів випрямляча. Для зниження втрат, при великому споживаної струмі, в якості випрямлячів використовують діоди Шотткі, що володіють малим прямим падінням напруги.

Дросель вихідний групової стабілізації. Дросель згладжує імпульси, накопичуючи енергію між імпульсами з вихідних випрямлячів. Друга його функція - перерозподіл енергії між ланцюгами вихідних напруг. Так якщо по якомусь каналу збільшиться споживаний струм, що знизить напругу в цьому ланцюзі, дросель групової стабілізації як трансформатор знизить напругу по інших ланцюгах. Ланцюг зворотного зв'язку виявить зниження вихідних ланцюгів, збільшить загальну подачу енергії, і відновить необхідні значення напруг.

Вихідні фільтруючі конденсатори. Вихідні конденсатори, разом з дроселем групової стабілізації інтегрує імпульси, тим самим одержуючи необхідні значення напруг, які значно нижче напруг з виходу трансформатора на одну лінію або на кілька ліній, зазвичай +5 і +3,3) навантажувальних резисторів 10-25 Ом, для забезпечення безпечної роботи на холостому ходу.

Переваги такого блоку живлення:

• Проста і перевірена часом схемотехніка із задовільною якістю стабілізації вихідних напруг.

• Високий ККД. Основні втрати припадають на перехідні процеси, які тривають значно менший час, ніж стійкий стан.

• Малі габарити і маса, обумовлені як меншим виділенням тепла на регулюючому елементі, так і меншими габаритами трансформатора, завдяки тому, що останній працює на більш високій частоті.

• Менша металоємність, завдяки чому потужні імпульсні джерела живлення коштують дешевше трансформаторних, незважаючи на велику складність.

• Можливість включення в мережі широкого діапазону напруг і частот, або навіть постійного струму. Завдяки цьому можлива уніфікація техніки, виробленої для різних країн світу, а значить і її здешевлення при масовому виробництві.

Недоліки півмостового блоку живлення на біполярних транзисторах:

• При побудові схем силової електроніки використання біполярних транзисторів у якості ключових елементів знижує загальний ККД пристрою. Управління біполярними транзисторами вимагає значних витрат енергії. Все більше комп'ютерних блоків живлення будується на більш дорогих потужних MOSFET-транзисторах. Схемотехніка таких комп'ютерних блоків живлення реалізована як у вигляді півмостової схеми, так і зворотньоходових перетворювачів. Для задоволення малогабаритних вимог до комп'ютерного блоку живлення, в зворотньоходових перетворювачах використовуються більш високі частоти перетворення (100-150 кГц).

• Велика кількість намотувальних виробів, індивідуально розробляються для кожного типу блоків живлення. Такі вироби знижують технологічність виготовлення БП.

• У багатьох випадку недостатня стабілізація вихідної напруги по каналах. Дросель групової стабілізації не дозволяє з високою точністю забезпечувати значення напруг у всіх каналах. Більш дорогі блоки живлення формують напруги ± 5 В і 3,3 В за допомогою вторинних перетворювачів з каналу 12 В.