Тема №5 СИНТЕЗ СИСТЕМ РЕГУЛЮВАННЯ

5.1 Вибір структури й оцінка параметрів систем регулювання

Результатом аналізу технологічного процесу як об'єкта керування є вибір структури АСР та попередня оцінка комплексу технічних засобів. Дані про динамічні характеристики ОР та інших засобів автоматизації одержують на основі їх математичного або фізичного моделювання, а також результатів експерименту.

Побудова АСР починається з визначення величин технологічного об'єкта, які підлягають контролю та регулюванню. Крім того, необхідно визначити точки введення керуючих впливів і канали їх проходження по об'єкту. З цією метою складають схему взаємних впливів величин об'єкта, відокремлюють основні та додаткові канали проходження сигналів, а після цього складають окремі контури регулювання, які компенсують вплив збурень. У разі потреби основні контури регулювання взаємопов'язують.

Контролюючі величини вибирають так, щоб їх кількість була мінімальною, але при цьому треба забезпечувати найповнішу уяву про хід протікання технологічного процесу.

Керуючі впливи вносять за допомогою виконавчих регулюючих органів, які змінюють матеріальні або теплові потоки. При розробці АСР вибирають один або кілька показників ефективності процесу, встановлюють необхідні обмеження, знаходять статичні та динамічні характеристики об'єкта регулювання. У результаті аналізу статичних характеристик оцінюють ступінь впливу одних величин на інші і виявляють регулюючі величини, які найістотніше впливають на процес. Якщо в об'єкті є кілька незалежних величин, їх регулюють окремо за рахунок впровадження відповідних контурів регулювання. В об'єктах із залежними регулюючими величинами використовують контури регулювання, в яких ураховується ступінь дії керуючих сигналів на регульовані величини.

Вибираючи вимірювальні та проміжні перетворювачі, виходять з того, що номінальні або задане значення регульованої величини мають становити 50-70% його максимального значення. Крім того, слід ураховувати інерційність вимірювальних перетворювачів і виконавчих механізмів, оскільки вони можуть істотно впливати на якість регулювання.

Характеристики ОР, як правило, нелінійні, але в системах автоматичної стабілізації більша частина змінних параметрів відхиляється від номінального значення в достатньо вузьких межах.

foto

Координати х0, у0 на статичній характеристиці визначають номінальний стан роботи об'єкта згідно з технологічним регламентом. Тому х0, у0 називаються номінальними значеннями параметрів. Допустимі межі відхилення параметрів x і у відносно їх номінальних значень також обумовлені регламентом

foto

fotoа в деяких випадках зазначаються межі допустимих відхилень змінних параметрів, наприклад х змінюється від х1 до х2, у - від у1, до у2,. У таких випадках номінальні значення параметра розраховують за формулами:

foto

а допустимі межі відхилення

foto


Ураховуючи, що межі відхилення ∆х, достатньо вузькі, вважають, що в цих межах нелінійність статичної характеристики незначна. Тому відрізок статичної характеристики від х1 до х2 навколо заданого номінального значення х0 лінеаризують і вважають, що він є робочим для системи регулювання. Це означає, що динамічна похибка регулювання (максимальне відхилення перехідного процесу від усталеного значення) не повинна перевищувати відхилення ∆у як регульованої координати. Таким чином, допустиме перерегулювання АСР можна визначити за формулою:

foto

Іноді відхилення вхідних і вихідних координат від їх номінальних значень задається середньоквадратичним відхиленням

foto

У цих випадках допустиме пере регулювання АСР можна визначити за формулою

foto

з довірчою ймовірністю 0,99…0,995.

Аналогічно можна визначити межі відхилення тих чи інших координат як довірчі межі зміни випадкової величини з довірчою ймовірністю 0,99…0,995.

Звідси можна знайти допустимий рівень ступінчастого збурення, яке можна подавати на вхід системи регулювання в процесі її дослідження.

Важливим етапом при розробці системи регулювання є аналіз статичних зв'язків між вхідними та вихідними координатами. Мета такого аналізу - виявити статично незалежні керуючі впливи та регулюючі параметри.

Зв'язки між різними змінними можуть виникати внаслідок виконання умов матеріального та теплового балансу, дії тих чи інших фізико-хімічних законів, а також за рахунок того, що частину параметрів, які є вихідними для системи регулювання, розраховують, використовуючи інші змінні.

При виборі структури АСР обмеженням є таке правило: змінні, які підлягають стабілізації, необхідно вибирати так, щоб вони були статично взаємонезалежними, тобто щоб у статичному режимі кожна з них не визначалась за значеннями інших. Якщо правило не виконується, то це призводить до статичної невизначеності системи. Навіть коли завдання регуляторів узгоджені зі зв'язком між змінними, то система може бути непрацездатною, оскільки уникнути похибки в завданні практично неможливо. Нехай

foto

- завдання регуляторів, а у1 і у2 - вихідні параметри системи регулювання. Якщо у1 і у2 - абсолютно незалежні параметри, то має виконуватися рівність

foto

Через різні похибки ця рівність не виконується, а це призводить до накопичення систематичної похибки, і вихідний сигнал може набути максимального або мінімального значення незважаючи на те, що завдання регулятора не змінювалося.

Щоб технологічній процес був статично керованим, необхідно, щоб кількість незалежних керуючих впливів була не меншою, ніж кількість стабілізуючих змінних.

Аналіз статики об'єкта по каналах збурення дає змогу в багатьох випадках зменшувати кількість регульованих змінних. Зв'язок між вихідною координатою у і збуренням z має вигляд

foto- коефіцієнт передачі по каналах збурення.

Якщо виконується нерівність

foto

то збурюючи впливи не спричиняють статичного відхилення y0 понад припустиме.

5.2 Вибір закону регулювання регулятора

Закон регулювання регулятора вибирають з урахуванням особливостей об'єкта і заданих параметрів якості перехідного процесу. До якості регулювання кожного конкретного технологічного процесу, який має певні особливості, висуваються конкретні вимоги: забезпечення мінімального значення динамічної похибки регулювання або мінімального значення часу регулювання. Тому згідно з вимогами технології як заданий вибирають один із трьох типових перехідних процесів: граничний аперіодичний; із 20%-м перерегулюванням; із мінімальною квадратичною площею відхилення.

Динамічні характеристики конкретного об'єкта і збурення, що надходять на нього, характеризуються своїми величинами або законами їх зміни. Активно впливати на них у процесі експлуатації, як правило, неможливо. З огляду на це для досягнення потрібної якості регулювання при вибраному типовому перехідному процесі необхідно прийняти відповідний закон регулювання і знайти параметри настроювання регулятора. Звичайно цю операцію виконують після визначення динамічних властивостей об'єкта.

Реально закон регулювання регулятора визначається вимогами якості регулювання того чи іншого технологічного процесу. Якщо допустима межа відхилення технологічного параметра достатньо велика, то можна використовувати пропорційний закон регулювання. При цьому статична похибка не повинна перевищувати допустимої межі зміни регульованого параметра. Якщо допустимі відхилення цього параметра малі, то в закон регулювання необхідно вводити інтегруючу складову, тобто прийняти пропорційно-інтегральний закон регулювання. Щоб зменшити час перехідного процесу, у ПІ-закон регулювання вводять диференціальну складову.

Інтегральні регулятори, як правило, у реальних системах регулювання не використовують. Крім того, їх не можна використовувати для регулювання технологічних параметрів на нейтральних об'єктах, оскільки такі системи нестійкі при всіх значеннях настроювальних параметрів.

П-регулятори мають великі швидкість та коефіцієнт підсилення і можуть працювати на інерційних об'єктах. Але, як зазначалося, їх можна використовувати лише тоді, коли в разі зміни навантаження об'єкта припустимим є відхилення вихідної координати від заданого значення.

ПІ-регулятори мають достатню швидкодію, крім того, здатні виводити параметр на задане значення за рахунок інтегруючої складової, тому вони найбільше поширені в системах регулювання.

ПІД-регулятори використовують тоді, коли об'єкти характеризуються великим запізненням і мають великі зміни у навантаженні. Якщо жодний із розглянутих законів регулювання не дає змоги одержати перехідний процес регулюючої величини, який не виходив би за межі заданих показників якості, то для регулювання вихідної координати замість одноконтурної необхідно використовувати ту чи іншу багатоконтурну систему регулювання.

Рекомендується вибирати орієнтовно закон регулювання за величиною відношення часу запізнення τ до сталої часу Т0 об'єкта – τ /Т0:

foto

Параметри τ і Т0 можна визначити як за кривою розгону, так і за математичним описом об’єкта. Крива розгону є експериментальною і найточніше характеризує регулювання по досліджуваному каналу. При математичному способі визначення відношення τ /Т0 необхідно одержати математичну модель об’єкта регулювання, розрахувати час запізнення і знайти передаточну функцію еквівалентного об’єкта.

foto

5.3 Розрахунок настроювань регуляторів

При визначенні настроювань регуляторів показником оптимальності системи регулювання звичайно беруть інтегральний критерій якості при дії на об'єкт найсильнішого збурення з урахуванням додаткового обмеження на запас стійкості системи. У практичних розрахунках запас стійкості зручно характеризувати показником коливальності системи.

Під оптимальними розуміють настроювання регуляторів, які забезпечують заданий ступінь коливальності т процесу регулювання при мінімумі інтегрального квадратичного критерію.

Серед інженерних методів розрахунку настроювань регуляторів найпоширенішими є експериментальні за кривими розгону, метод незагасаючих коливань (метод Нікольса - Ціглера) і метод розширених частотних характеристик (РЧХ).

Експериментальний метод грунтується на використанні параметрів кривої розгону ОР.

foto

У цьому разі об’єкт ідентифікується першим порядком, який має сталу часу T0,час чистого запізнення τ і коефіцієнт передачі по досліджуваному каналу К0. Причому дослідження виконують за всіма ймовірними каналами регулювання і вибирають той, який має найбільший коефіцієнт передачі. Оптимальні настроювання регулятора (ОНР) знаходять за такими формулами:

foto

Метод за швидкістю перехідного процесу не потребує визначення сталої часу об’єкта. На кривій розгону (див. рис. 5.4.) міститься точка максимальної динамічної чутливості і на дотичній до цієї точки будується прямокутний трикутник.

foto

Використовуючи

fotoі час запізнення τ, визначають параметри настроювання регулятора за формулами, наведеними в таблиці.

foto

Метод незгасаючих коливань. Як відомо автоматична система регулювання розміщується на межі стійкості, тобто має коливання вихідного з однаковими амплітудою і частотою, якщо характеристичне рівняння такої системи дорівнює нулю. Отже, для одноконтурної АСР маємо

foto

Вважатимемо, що регулятор грунтується на П-законі регулювання, передаточна функція якого

foto

Із рівняння /5.9./ знаходимо критичну частоту коливань . Підставивши цю частоту в рівняння АЧХ, дістанемо критичний коефіцієнт підсилення регулятора Kpкр. За ωкр і Kpкр розраховують ОНР за формулами, наведеними в табл. 5.2.

foto

Розраховані за табл. 5.2 настроювання регулятора забезпечують ступінь загасання ψ=0,8…0,9.

Зазначимо, що фазочастотну характеристику (ФЧХ) еквівалентного об’єкта керування (для визначення ωкр) доцільно подавати у вигляді

foto

У цьому разі навіть при τ3=0 завжди можна визначити критичну частоту ωкр.

Контрольні запитання:

1. З чого починають побудовуа АСР?

2. Що являє собою статична характеристика об’єкта?

3. Як здійснюється вибір закону регулювання регулятора?

4. Що розуміють під оптимальними настроювання регуляторів?

5. Який найзручніший із методів розрахунку і за якими формулами здійснюється розрахунок?